58850=1/2(100)v^2

Simple and best practice solution for 58850=1/2(100)v^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 58850=1/2(100)v^2 equation:



58850=1/2(100)v^2
We move all terms to the left:
58850-(1/2(100)v^2)=0
Domain of the equation: 2100v^2)!=0
v!=0/1
v!=0
v∈R
We get rid of parentheses
-1/2100v^2+58850=0
We multiply all the terms by the denominator
58850*2100v^2-1=0
Wy multiply elements
123585000v^2-1=0
a = 123585000; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·123585000·(-1)
Δ = 494340000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{494340000}=\sqrt{10000*49434}=\sqrt{10000}*\sqrt{49434}=100\sqrt{49434}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{49434}}{2*123585000}=\frac{0-100\sqrt{49434}}{247170000} =-\frac{100\sqrt{49434}}{247170000} =-\frac{\sqrt{49434}}{2471700} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{49434}}{2*123585000}=\frac{0+100\sqrt{49434}}{247170000} =\frac{100\sqrt{49434}}{247170000} =\frac{\sqrt{49434}}{2471700} $

See similar equations:

| 20x-8=10x+22 | | 20580=1/2(100)v^2 | | -3x=5=-1 | | 5(x+3)=2(3x+6) | | 5=1-a+1 | | 4^(x-6)=6^x | | 2z+0=2 | | 14=4/5x=30 | | 20a=17a+18 | | 18-(x+4)=9 | | -15=2n-6+1 | | X+x/12=-26 | | 7x-11=2x+12 | | 4a=2a+34 | | V+39=17v-9 | | 3x+4=-5x-2 | | P=8m^2-9m+3 | | 5(3x-4)=3(6x-3)+7 | | 7v-36=5v | | 1-2x-3=-8 | | 18-4w=2w | | 2w+9=w+29 | | -5x+10-3x=-50 | | x^2-9x-75=0 | | 4v=v+39 | | 30+5=10w | | 10x-6=13x+12 | | u=32-7u | | 2n+3n-5=4n-3 | | 0.5x+12.5=x-4.55 | | 19k=18k+20 | | t-14=19 |

Equations solver categories